Optical, Surface Morphological, And Antibacterial Properties of Nanostructured Tio2:M (M=Fe, Ce, Ag) Thin Films

نویسنده

  • F. E. Ghodsi
چکیده

In this research, undoped and doped (Fe, Ce, and Ag) antibacterial coatings of nanostructured TiO2 films were prepared by a sol-gel dip coating method. Doped and undoped TiO2 films were excited with ultraviolet (UV) radiation to improve their photo catalytic activity. The antibacterial activity against Staphylococcus Aureus bacteria was studied using an antibacterial–drop test and colony count method. The Fe doped TiO2 films exhibited higher antibacterial activity than other samples. The percent of bacteria killing or killed (PBK) on bare glass substrate, undoped, Ce, Ag, and Fe doped TiO2 thin films (after UV illumination) were 23.8, 50.3, 57.8, and 70.1%, respectively. Uv-Visible Spectrophotometry, Photoluminescence (PL), X-ray Diffraction (XRD), and Atomic Force Microscopy (AFM) were carried out to study the relation between optical, luminescence, structural, and surface morphological characteristics of the samples with their antibacterial activities. Several parameters such as thickness of the films, porosity in the films, crystallization, and surface morphology affect the antibacterial activity of transition metal doped TiO2 thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and characterization of nanostructured S and Fe co-doped TiO2 thin film by ultrasonic-assisted spray pyrolysis method

Nanostructured TiO2 and S and Fe co-doped TiO2 thin films with high transparency were prepared on glass substrate through ultrasonic-assisted spray pyrolysis technique. The effects of doping on morphological, optical an...

متن کامل

Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films

   In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...

متن کامل

Hydrophilicity and antibacterial properties of Ag / TiO2 nanoparticle

TiO2 thin films and Ag/TiO2 nanoparticles were prepared by CVD and plasma bombardment method. XRD results showed the presence of Ag nanoparticles in TiO2 matrix. SEM image confirmed formation of Ag nanoparticles. XPS analysis was utilized to study the chemical state of the Ag/TiO2 nanostructure. Statistical surface analysis revealed that since there i...

متن کامل

STUDY OF ANNEALING TEMPERATURE VARIATION ON THE STRUCTURAL PROPERTIES OF DIP-COATED TiO2-SiO2 NANOSTRUCTURED FILMS

Abstract:In the present research, SiO2–TiO2 nanostructure films were successfully prepared on windshields using the sol–gel technique for photocatalytic applications. To prevent the thermal diffusion of the sodium ions from the glass to TiO2 films, the SiO2 layer was pre-coated on the glass by the sol–gel method. The substrates were dipped in the sol and withdrawn with the speed of 6cm/min-1 to...

متن کامل

On the Investigation of Sol-Gel TiO2 Nanostructured Films Applied on Windshields Pre-Coated with SiO2 Layer by Dip-Coating Method

TiO2-SiO2 photocatalytic nanostructure film on windshield for self-cleaning purposes was prepared via sol–gel dip-coating method. TiO2 films were prepared on automotive glass pre-coated with a SiO2 layer by a dip-coating method followed by annealing at 500 °C for 30min. The films were characterized using X-ray diffraction XRD and scanning electron microscopy SEM, FE-SEM techniques. The TiO2-SiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014